Abbreviations

\tilde{a}_i	Standardized log-return of firm <i>i</i>
\tilde{A}_T	Asset value at $t = T$
$\mathcal{B}(n,p)$	Binomial distribution with parameters n and p
\mathbb{C}	Set of all complex numbers
Ũ	Default event
$\mathbb{E}(\cdot)$	Expectation value
$ES^{(\infty)}_{\alpha}$	ES at confidence level α of a portfolio with infinite granularity
Δl_1	First-order granularity adjustment
Δl_2	Additional term of the second-order granularity adjustment
Ĩ	Relative loss
\tilde{L}_{abs}	Absolute loss
$\tilde{\bar{L}}$	Portfolio loss in an accurately adjusted ASRF model
\mathcal{L}	Laplace transform
\mathbb{N}	Set of all natural numbers
$\mathcal{N}(\mu,\sigma^2)$	Normal distribution with expectation μ and variance σ^2
$O(\cdot)$	Landau symbol
\bar{p}	Average probability of default
$p(\cdot)$	Conditional probability of default
Δp	Shift of the survival probability
$\mathbb{P}(\cdot)$	Probability
$q^{(n)}_{lpha}$	Quantile of a granular portfolio
$q^{(\infty)}_{lpha}$	Quantile of an infinitely granular portfolio
Δq	Shift of the loss quantile
$\varDelta q_{\alpha}$	Multi-factor adjustment
$\varDelta q^\infty_{lpha}$	Systematic risk adjustment component of the multi-factor adjustment
$\varDelta q_{\alpha}^{\mathrm{GA}}$	Granularity adjustment component of the multi-factor adjustment
\bar{r}_{Intra}	Average intra-sector correlation
\bar{r}_{Inter}	Average inter-sector correlation
\mathbb{R}	Set of all real numbers

	•		•
xv	1	1	1
	-	•	•

$\mathbb{V}(\cdot)$	Variance
$V_{a}R^{(\infty)}$	VaR at confidence level α of a portfolio with infinite granularity
$VaR_{\alpha}^{(+)}$	Lower VaR at confidence level α
$V_{\alpha}P^{(-)}$	Alternative definition of VaR: maximal loss in the best $100 \cdot \alpha\%$ scenarios
$V \alpha \Lambda_{\alpha}$	Internalated VaP at confidence level of
$VaR_{\alpha}^{(ab)}$	
x ~	Systematic factor
\hat{x}_s	RISK factor of sector s
Y ~	Systematic part of the portiono loss
\tilde{z}_k	Independent fisk factors
Z	General idiosyncratic component of the portfolio loss
ℤ 1	Set of all integers
1{}	
$\alpha^{(\infty)}$	Quantile of an infinitely granular portfolio
β	Average weighted inter-sector correlation
Γ	Gamma function
$\frac{\partial(\cdot)}{\tilde{c}}$	Dirac's delta function
ε_i	Idiosyncratic factor of firm <i>i</i>
$\eta_m(\cdot)$	<i>m</i> -th moment about the mean
$\eta_{m,c}$	<i>m</i> -th conditional moment of the portiono loss about the mean
$\mu_m(\cdot)$	<i>m</i> -th moment about the origin
$\mu_{m,c}$	<i>m</i> -th conditional moment of the portfolio loss about the origin
ς_i	Idiosyncratic factor of firm <i>i</i>
$\rho_{\sqrt{2}}$	Risk measure
$\sqrt{\rho_i}$	model
$\bar{ ho}_i$	Correlation between obligor <i>i</i> and the systematic risk factor \tilde{x}
$\bar{ ho}_s$	Correlation between sector factor \tilde{x}_s and the systematic risk factor
$\rho_{s,t}^{\text{Inter}}$	Correlation between the risk factors of sector s and t
$ ho_{\mathrm{Intra}}^{(\mathrm{Implied})}$	Implicit intra-sector correlation
φ	Standard normal PDF
φ_2	Bivariate normal PDF
Φ	Standard normal CDF
Φ^{-1}	Inverse standard normal CDF
Φ_2	Bivariate normal CDF
μ	Drift rate or expectation value
μ_X	Parameter of the lognormal and logit-normal distribution
В	Liabilities; Beta function; risk bucket
b_i	Factor loading to the systematic factor
b_k	Coefficients of sector factors
CCF	Credit conversion factor
CDF	Cumulative distribution function

C _i	Factor loading to the idiosyncratic factor; correlation parameter in the
	comparable one-factor model
COMM	Commitments
D	Diversity score
DF	Diversification factor
d_i	Default threshold of obligor <i>i</i> ; weighting factor in the model of Pykhtin
EAD	Exposure at default
EC^{mf}	Economic capital in a multi-factor model
EL	Expected loss in relative values
EL_{abs}	Expected loss in absolute values
ELGD	Expected LGD
ES	Expected shortfall
ES_{α}	ES at confidence level α
f	Probability density function
F	Cumulative distribution function
F^{-l}	Inverse cumulative distribution function
G	Gini coefficient
HHI	Herfindahl–Hirschmann index
I_c	Critical number of credits
J	Number of observations in a historical or Monte Carlo simulation
k	Number of defaults
Κ	Number of independent factors
LGD	Loss given default
$L_{i:J}$	j-th out of J elements of the order statistics
Ň	Maturity; moment generating function
n	Number of credits
Ν	Number of observations
<i>n</i> [*]	Effective number of credits
$N_{\rm PD}$	Number of PD-classes
OUT	Current outstandings
р	Survival probability $(=1-\alpha)$; probability of a direct default in the
	model of Davis and Lo
PD	(Unconditional) Probability of default
PDF	Probability density function
q	Infection probability in the model of Davis and Lo
q_{lpha}	Lower quantile
q^{lpha}	Upper quantile
RC^{s}	Regulatory capital for sector s
Res	Residuum
RR	Recovery rate
S	Annual sales; number of Sectors
SLGD	Third moment of the LGD about the mean
Т	Point in time
TCE	Tail conditional expectation

TCE_{α}	Lower TCE at confidence level α
TCE^{α}	Upper TCE at confidence level α
UL	Unexpected loss
VaR	Value at risk
VaR_{α}	Lower VaR at confidence level α
VaR^{α}	Upper VaR at confidence level α
VLGD	Variance of the LGD
W	Wiener process
Wi	Exposure weight of credit <i>i</i> in the portfolio
α	Confidence level; parameter of the beta distribution
$\alpha_{i,k}$	Factor weight of obligor <i>i</i> from Cholesky decomposition
$\alpha_{s,k}$	Factor weight of sector <i>s</i> from Cholesky decomposition
β	Target tolerance; parameter of the beta distribution
λ	Fraction of the idiosyncratic risk that stays in the portfolio
σ	Volatility or standard deviation
σ_X	Parameter of the lognormal and logit-normal distribution
τ	Lagrange multiplier